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Accelerate pre-clinical drug discovery by developing
novel molecular optical imaging assays

Our main focus is to develop imaging assays to
guantitate target engagement of anti-cancer agents in
pre-clinical research
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Target engagement in drug screening

In vitro Assays Compound In vivo Assays
Prioritization
(in vitro, ex-vivo, in vivo) i ez
Binding/affinity Assays T Preclinical Clinical
e e _ —p _
Saleciity Assaye Assessment Animal Models Biomarkers
A 4

ADMET profiling >

Develop optical imaging
whole body assays to
perform target
engagement
assessment in vivo in
pre-clinical animal
models
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Targeted delivery of anti-cancer drugs

" Traditional cancer chemotherapy is currently used when
rapid disease control is required or upon the development of
tumor resistance to targeted functional therapies.

® However, chemotherapy generally leads to harmful side
effects and drug resistance, thus warranting the development
of targeted therapy in which drugs or antibodies are
specifically delivered to cancer cells.

" Targeted therapy is potentially more effective than
radiation or traditional chemotherapy since it:

" specifically delivers drugs or antibodies to cancer cells
¥ keeps drugs away from healthy cells

" reduced toxic side effects of drugs

" Better tolerated by cancer patients



Many anti-cancer therapies in development

target the transferrin receptor (TfR)

The transferrin receptor (TfR) functions in cellular iron
uptake via interaction with its native ligand, the iron-bound
transferrin (TT)

TfR is upregulated and efficiently internalized into in cancer
cells

TfR has been widely used as a target for molecular
iImaging

Tf has been used as a carrier for anti-cancer drugs in
targeted therapy



TfR and targeted delivery of imaging or

cytotoxic agents
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TfR and targeted delivery of imaging or

cytotoxic agents
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TfR targeting:

= Effective in delivering
Peptide many therapeutic
Targeting

agents that can cause
cytotoxic effects In
cancer cells in vitro
and in vivo.

® However, there is no FDA-approved Tf-based drug
delivery system (several in phase 1/11 trials)

"  Optimization of TfR-Tf targeting and delivery is
needed




Construction of protein ligand-based or

antibody-based imaging agents
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Challenges in imaging targeted therapy
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" Due to the enhanced permeability and retention effect (EPR),
labeled ligands/drugs accumulate at the tumor region.

® Currently, only invasive biochemical methods can be used to
assess ligand or antibody-receptor binding (i.e. target
engagement) in tumors.

" Thus, non-invasive imaging methods are needed to
quantitate drug-receptor binding and uptake into tumors in live
animals by discriminating between:

® Soluble ligand, receptor-independent
passive tumor accumulation (EPR effect)

® Drug-receptor binding and uptake into
tumors (Target engagement)



Challenges in imaging targeted therapy
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A Normal tissue

B Tumor tissue

Hypoxic tumor

Low local pH drainage




Challenges in imaging targeted therapy

® Ability to non-invasively monitor and target engagement,
I.e. binding and internalization of drug-ligand or antibody
conjugates, into targets within live subjects

— uncertainty due to the EPR effect

— the only way to assess if internalization has occurred is via
Invasive, destructive ex-vivo analysis

Fluorescence lifetime FOorster Resonance

Energy Transfer (FRET)

® Ability to non-invasively quantify fluorescence signals
through living tissues in small animal models

— high degree of autofluorescence

— poor signal penetration depth through biologically
heterogeneous tissues

Near infrared (NIR)



Main goal

WS4 I

" To establish macroscopy fluorescence lifetime
FRET (MFLI-FRET) as the gold standard to
guantitate target engagement in pre-clinical
small animal models of breast cancer:

® Across microscopy and macroscopy

" Across visible and anges

® Across in vitro and]in vivo japproaches

» Perform optical imaging of living thick tissue using a whole-
body wide-field time-resolved imager to measure NIR
MFLI-FRET In vivo (Collaboration with X. Intes, RPI)



Preclinical molecular optical imaging
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Preclinical applications: optical imaging
Preclinical imaging can early identify potential drug candidate
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Novel Molecular Optical Imaging:
Lifetime (1) based imaging

B Lifetime is an intrinsic characteristics of t

fluorophore

®  Additional information to fluorescence £
iIntensity

® Lifetime is independent on concentration

Time

" Lifetime is minimally affected by optical properties

®  Mainly used in microscopy to provide:
® Increased multiplexing power

® Sense the tissue and cellular microenvironment (pH,
temperature, viscosity, analytes concentration, O,)

® Nanoscale protein-protein interaction assays (FRET)



FOrster Resonance Energy Transfer (FRET)
using fluorescence lifetime imaging
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® Fluorescence lifetime of donor will be
shortened

FRET provides quantitative imaging of protein-protein
interactions on a nanometer scale

® More robust than fluorescence-
Intensity based FRET
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Wide-field MFLI and FRET

Lifetime-based FRET quantification and FRETing Donor
Fraction (FD%0)

Bi-exponential decay model:
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Wide-field MFLI and FRET

Donor amount is constant.

Component Amplitudes (Simulation)
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Red-shift FRET to measure target
engagement in small animal Iin vivo imaging
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Technical considerations
" In vivo FRET requires NIR FRET pair

" NIR allows transmission through live
animal
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TFfR-TT FOrster Resonance Energy Transfer
(FRET) imaging assay
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" FRET can measure TfR-Tf binding (target engagement),
a crucial parameter for optimization of targeted therapy

" Near infrared (NIR)-labeled Tf permits deep tissue
penetration and the non-invasive longitudinal application
of FRET in living mice



Macroscopic Fluorescence
Molecular Tomography

®  Whole-body small animal imaging
(~1.5-2cm thick)

® Lifetime-based sensing
® Resolution >1mm

Preclinical imaging

® Nude mice/tumor xenografts
" Molecular probes (NIR-Tf)
" In vivo FRET imaging

" Drug delivery assessment /

FRET: Protein-Protein Interaction

Drug delivery Assessment
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Live small animal NIR MFLI-FRET imaging
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Tumor xenograft creation
Collect ER+ T47D

c———

human Mix with Cultrex Inject
breast | : BME 1:1 - §ubcut_aneously
cancer cells ' into mice 4-6 weeks
till tumors
reach
Ex vivo validation Live animal longitudinal imaging ﬂ volume
Imaging of excised v injection of
NIR labeled
transferrin (Tf)
<& <& © AF700-Tf
O AF750-Tf

Wide-field time-resolved NIR
MFLI-FRET imager



TfR-Tf NIR MFLI-FRET In tumors in vivo
Application: in vivo FRET imaging

0
o Context: Drug delivery assessment and optimization
o Drug Carrier: NIR-labeled transferrin (NIR-T¥)
o Established: Robust, quantitative
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NIR MFLI-FRET shows high sensitivity

50
< 20ug FRET Results are pooled from 21

- Imaging sessions of live
8° 40 1 ¢ 40ug animals bearing T47D breast
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Conclusions

®* NIR MFLI-FRET imaging correlates with the target
engagement of TfR-Tf in tumor cells in vivo.

®* NIR MFLI-FRET imaging is a quantitative and non-
iInvasive tool for the optimization of targeted drug
delivery systems based on ligand-receptor or
antibody-target engagement in tumors in Vvivo.



